0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 IDP
↳10 IDPNonInfProof (⇒)
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA1 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
while (x > 0) {
int y = 0;
while (y < x) {
y++;
}
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 20 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
348_0_main_GE(x1, x2, x3, x4, x5) → 348_0_main_GE(x2, x3, x4, x5)
Cond_348_0_main_GE1(x1, x2, x3, x4, x5, x6) → Cond_348_0_main_GE1(x1, x3, x4, x5, x6)
Cond_348_0_main_GE(x1, x2, x3, x4, x5, x6) → Cond_348_0_main_GE(x1, x3, x4, x5, x6)
Filtered duplicate args:
348_0_main_GE(x1, x2, x3, x4) → 348_0_main_GE(x3, x4)
Cond_348_0_main_GE1(x1, x2, x3, x4, x5) → Cond_348_0_main_GE1(x1, x4, x5)
Cond_348_0_main_GE(x1, x2, x3, x4, x5) → Cond_348_0_main_GE(x1, x4, x5)
Filtered unneeded arguments:
Cond_348_0_main_GE(x1, x2, x3) → Cond_348_0_main_GE(x1, x3)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] >= x0[0] && x0[0] > 0 && 0 < x0[0] + -1 →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((0 →* x1[0])∧(x0[1] + -1 →* x0[0]))
(1) -> (2), if ((0 →* x1[2])∧(x0[1] + -1 →* x0[2]))
(2) -> (3), if ((x1[2] >= 0 && x1[2] < x0[2] →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3]))
(3) -> (0), if ((x1[3] + 1 →* x1[0])∧(x0[3] →* x0[0]))
(3) -> (2), if ((x1[3] + 1 →* x1[2])∧(x0[3] →* x0[2]))
(1) (&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1)))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 348_0_MAIN_GE(x1[0], x0[0])≥NonInfC∧348_0_MAIN_GE(x1[0], x0[0])≥COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])∧(UIncreasing(COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])), ≥))
(2) (<(0, +(x0[0], -1))=TRUE∧>=(x1[0], x0[0])=TRUE∧>(x0[0], 0)=TRUE ⇒ 348_0_MAIN_GE(x1[0], x0[0])≥NonInfC∧348_0_MAIN_GE(x1[0], x0[0])≥COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])∧(UIncreasing(COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])), ≥))
(3) (x0[0] + [-2] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x0[0] + [-2] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x0[0] + [-2] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] + [-2] + [-1]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(8) (COND_348_0_MAIN_GE(TRUE, x1[1], x0[1])≥NonInfC∧COND_348_0_MAIN_GE(TRUE, x1[1], x0[1])≥348_0_MAIN_GE(0, +(x0[1], -1))∧(UIncreasing(348_0_MAIN_GE(0, +(x0[1], -1))), ≥))
(9) ((UIncreasing(348_0_MAIN_GE(0, +(x0[1], -1))), ≥)∧[1 + (-1)bso_15] ≥ 0)
(10) ((UIncreasing(348_0_MAIN_GE(0, +(x0[1], -1))), ≥)∧[1 + (-1)bso_15] ≥ 0)
(11) ((UIncreasing(348_0_MAIN_GE(0, +(x0[1], -1))), ≥)∧[1 + (-1)bso_15] ≥ 0)
(12) ((UIncreasing(348_0_MAIN_GE(0, +(x0[1], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)
(13) (&&(>=(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 348_0_MAIN_GE(x1[2], x0[2])≥NonInfC∧348_0_MAIN_GE(x1[2], x0[2])≥COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(14) (>=(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ 348_0_MAIN_GE(x1[2], x0[2])≥NonInfC∧348_0_MAIN_GE(x1[2], x0[2])≥COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(15) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(16) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(17) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(18) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x1[2] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(19) (COND_348_0_MAIN_GE1(TRUE, x1[3], x0[3])≥NonInfC∧COND_348_0_MAIN_GE1(TRUE, x1[3], x0[3])≥348_0_MAIN_GE(+(x1[3], 1), x0[3])∧(UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥))
(20) ((UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[(-1)bso_19] ≥ 0)
(21) ((UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[(-1)bso_19] ≥ 0)
(22) ((UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[(-1)bso_19] ≥ 0)
(23) ((UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_19] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(348_0_MAIN_GE(x1, x2)) = [-1] + x2
POL(COND_348_0_MAIN_GE(x1, x2, x3)) = [-1] + x3
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_348_0_MAIN_GE1(x1, x2, x3)) = [-1] + x3
POL(1) = [1]
COND_348_0_MAIN_GE(TRUE, x1[1], x0[1]) → 348_0_MAIN_GE(0, +(x0[1], -1))
348_0_MAIN_GE(x1[0], x0[0]) → COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])
348_0_MAIN_GE(x1[2], x0[2]) → COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])
348_0_MAIN_GE(x1[0], x0[0]) → COND_348_0_MAIN_GE(&&(&&(>=(x1[0], x0[0]), >(x0[0], 0)), <(0, +(x0[0], -1))), x1[0], x0[0])
348_0_MAIN_GE(x1[2], x0[2]) → COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])
COND_348_0_MAIN_GE1(TRUE, x1[3], x0[3]) → 348_0_MAIN_GE(+(x1[3], 1), x0[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if ((x1[3] + 1 →* x1[0])∧(x0[3] →* x0[0]))
(3) -> (2), if ((x1[3] + 1 →* x1[2])∧(x0[3] →* x0[2]))
(2) -> (3), if ((x1[2] >= 0 && x1[2] < x0[2] →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((x1[3] + 1 →* x1[2])∧(x0[3] →* x0[2]))
(2) -> (3), if ((x1[2] >= 0 && x1[2] < x0[2] →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3]))
(1) (COND_348_0_MAIN_GE1(TRUE, x1[3], x0[3])≥NonInfC∧COND_348_0_MAIN_GE1(TRUE, x1[3], x0[3])≥348_0_MAIN_GE(+(x1[3], 1), x0[3])∧(UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥))
(2) ((UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[(-1)bso_11] ≥ 0)
(3) ((UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[(-1)bso_11] ≥ 0)
(4) ((UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[(-1)bso_11] ≥ 0)
(5) ((UIncreasing(348_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
(6) (&&(>=(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 348_0_MAIN_GE(x1[2], x0[2])≥NonInfC∧348_0_MAIN_GE(x1[2], x0[2])≥COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(7) (>=(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ 348_0_MAIN_GE(x1[2], x0[2])≥NonInfC∧348_0_MAIN_GE(x1[2], x0[2])≥COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(8) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_12] + [(-1)bni_12]x1[2] + [(2)bni_12]x0[2] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(9) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_12] + [(-1)bni_12]x1[2] + [(2)bni_12]x0[2] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(10) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_12] + [(-1)bni_12]x1[2] + [(2)bni_12]x0[2] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(11) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_12 + (2)bni_12] + [bni_12]x1[2] + [(2)bni_12]x0[2] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_348_0_MAIN_GE1(x1, x2, x3)) = [-1] + [2]x3 + [-1]x2
POL(348_0_MAIN_GE(x1, x2)) = [-1]x1 + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
348_0_MAIN_GE(x1[2], x0[2]) → COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])
348_0_MAIN_GE(x1[2], x0[2]) → COND_348_0_MAIN_GE1(&&(>=(x1[2], 0), <(x1[2], x0[2])), x1[2], x0[2])
COND_348_0_MAIN_GE1(TRUE, x1[3], x0[3]) → 348_0_MAIN_GE(+(x1[3], 1), x0[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer